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Abstract/Executive summary (of the deliverable) 
 

This report presents the methodology and the results of our machine learning (ML) analysis carried 
out within Task 1.2 of the CompBat project. The molecular database DB-I reported in deliverable 
D1.1 has been updated in terms of the applied computational protocol, as well as the number of 
pyridoxal derivatives. The updated database DB-II has been obtained with an improved protocol and 
it includes 6712 molecules. Various machine learning approaches, including the commonly used 
random forest algorithm and several deep-learning techniques, were applied to our molecular 
libraries and their performance was tested for reduction potentials and aqueous solubilities. We used 
different molecular representations (strings, fingerprints and graphs) in the ML analysis, which 
always involved a training process followed by a test procedure. We demonstrate that all the applied 
ML models perform well for both investigated properties; the overall accuracy of the ML predictions 
is higher than that of the applied quantum chemical computational protocol. Feature attribution 
analysis of pyridoxal derivatives has also been carried out to assign reliable and consistent 
importance to different molecular substructures. The impact of electron-withdrawing and donating 
groups on redox potentials, as well as charged and polar groups on solubilities is confirmed. The 
presented ML analysis represents an efficient methodology for high-throughput screening of RFB 
compounds, which will be further exploited within the CompBat project. 
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1 Introduction 

The CompBat project aims at developing various tools for discovery of new prospective candidates 

for next generation of redox flow batteries (RFB). High-throughput screening (HTS) that enables the 

identification of promising candidates of water-soluble redox-active compounds for experimental 

synthesis and electrochemical characterization is one target tool, and these developments are carried 

out within work package WP1. 

In the first phase of this project, we developed an efficient computational protocol and built a 

molecular library, which includes the structures, reduction potentials and aqueous solvation free 

energies of over 6200 pyridoxal-based neutral and charged species. This molecular database was 

reported in deliverable D1.1 of this project. In a follow-up work, the molecular library has been 

expanded by additional pyridoxal derivatives, and herein we present an updated version of the 

molecular database, which was obtained by an improved version of the computational protocol. 

As a next step towards high-throughput screening solutions for discovery of new candidates for 

the next generation of redox flow batteries, we applied various machine learning (ML) approaches using 

the developed pyridoxal databases. Our primary goal was to test the predicting power of different ML 

methods for the redox potential and solubility data, but in addition, we intended to perform feature-

property analysis as well, which provides insight into the importance of different molecular 

substructures involved in the pyridoxal derivatives. In this report, we describe the applied ML 

methodology and present the results of machine learning analysis. 
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2 Updated Molecular Database 

The molecular library generated in the first period of this project and reported in our D1.1 

deliverable involves the 3D structures, reduction potentials and aqueous solubility data for about 6200 

molecules classified into four different molecular sets depending on the substituents of their common 

pyridoxal framework (Figure 1). This molecular library will be referred to as Database I (DB-I) in the 

present report. 

 
 

Figure 1: Molecular sets derived from the pyridoxal framework. The full set of R2 substituents was provided in 

deliverable D1.1. 

 

The combination of R1, R2 and R3 substituents gives rise to 6336 molecules (2712 for pyr1, 1808 

for pyr2 and pyr3, 8 for pyr4 sets); however, our original computational protocol gave rise to 

unexpected chemical rearrangments (cyclization, for instance) for some molecules, which were omitted 

from the database. This computational artifact could be eliminated by implementing an updated 

version of the crest module [1] used in our computational protocol.  

pyr1 pyr2 pyr3 pyr4

R1 :

R2 : 113 different substituents (a1, a2, ..., b1, b2, ..., etc)

R3 :

(in pyr1) (in pyr3)(in pyr1 and pyr2)
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In our original protocol, the final structures of all the species were sorted based on the 

electronic energies computed for the conformers. However, as all calculations are performed in 

aqueous phase, it is more consistent to perform the selection of conformers according to their solvent 

phase Gibbs-free energies. We have, therefore, improved our protocol with two major changes: a) the 

updated version of the crest module is applied for the conformational search, and b) the conformers 

are sorted based on their solvent phase Gibbs-free energies. 

The molecular library has also been expanded by 376 additional molecules proposed by the JYU 

partners. Namely, the pyr1 set has been expanded by new R2 substituents (Figure 2), the –CH2OH group 

for R3 , and a new set pyr5 was also introduced (Figure 3). 

 

 

Figure 2. Proposed R2 substituents for the pyr1 molecular set. 
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Figure 3. Proposed R2 substituents for the pyr1 (R3=-CH2-OH) and pyr5 molecular set. 

 

The new database thus consists of 6712 molecules, for which the reduction potentials and the 

Gibbs free energies of solvation were recomputed using our updated computational protocol. 

Connectivity check has been performed for the reduced and oxidized forms of all molecules. The 

changed connectivity indicates that bond formation or breaking took place during the reduction 

process. This information is also included in the generated database. The new version of the molecular 

library is referred to as Database II (DB-II). The computed data are provided in a tabulated form as a 

supplementary information of this report (separate Excel documents; see Appendix 2). 

We note that the overall distribution of the reduction potential values (Figure 4) is very similar 

to the results obtained by the original protocol. The potential values for the new set pyr5 are in the 

range of -1.6 /-1.2 V vs. standard hydrogen electrode (SHE). In the potential region of electrochemical 

relevance (above -1.0 V) the predominant set is pyr1. 
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Figure 4. Distribution of computed potentials (vs. SHE) coloured according to the molecular sets. 

 

3 Machine Learning Methodology 

In this section, we describe the general concepts and the methodology of the machine learning 

approach used in our studies.  

Data processing  

The molecules of our datasets are stored in SDF (Structure-Data File) format, which is a Molfile 

representation. It contains the molecules’ atomic compositions, the bonds between them, and also 

some other properties. We used the Rdkit open-source chemoinformatics package [2] in Python to 

convert the Molfile data to other molecular representations (SMILES, fingerprints and graphs). Two 

different approaches were used to evaluate the performance of the ML methods. The dataset was 

either split randomly into training, validation and test sets (in 80%, 10% and 10% ratio), or a nested 

cross-validation procedure was applied (80%-20% train-test split). Both approaches allow to fine-tune 

the model hyperparameters to obtain optimal results. The performance of the ML models was 

quantified in terms of metrics, such as mean absolute error (MAE), root mean square error (RMSE), and 

the coefficient of determination (R2) parameters, obtained from regression analysis. 
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Molecular representations 

We used the following molecular representations in our present work. 

SMILES strings 

The Simplified Molecular-Input Line-Entry System (SMILES) [3] is simple line notation for 

encoding molecular structures. It is a linear series of ASCII characters bearing information on the atoms 

and bonds of the molecules, and on their connectivity as well. 

Molecular fingerprints 

Molecular fingerprints are representations of chemical structures originally designed to assist 

in chemical database substructure searching, but later used for analysis tasks and machine learning 

analysis as well. The most common type of fingerprint is a series of binary digits. i.e. bits either on (1) 

or off (0), that represent the presence or absence of particular substructures in the molecule. Several 

fingerprint types and formats are available, of which the Extended-Connectivity FingerPrints (ECFP) [4] 

were utilized in our studies. ECFP fingerprints involved either 1024 or 2048 bit vectors. 

Graph representation 

A molecule can be represented as a graph comprising atoms as nodes and bonds as edges. For 

each node, there is a feature vector corresponding to the atom features (e.g. atom type, number of 

other atoms attached, etc.) and other chemical informations, such as aromaticity, for instance. The 

adjacency and feature matrices are the basic inputs in this representation. The adjacency matrix 

represents the connectivity between the atoms (either 0 or 1); the feature matrix is constructed from 

a set of feature vectors representing the atom properties such as atom type, formal charge, and 

hybridization. 

Applied machine learning methods 

Several machine learning methods have been applied in the present work that range from 

classic machine learning solutions to more complex, deep learning techniques, which are based on 

convolutional neural networks (CNN) and graph convolutional networks (GCN). 

Random forest regression analysis 

One of the ML workflows employed in this work was implemented using the tools provided by 

the scikit-learn Python package [5]. Random forest (RF) [6] ensemble learning was used as the ML 

algorithm using 500 decision trees for a reasonable balance between accuracy and computational cost. 

5x5-fold nested cross-validation (CV) was used for model validation and testing. Notably, the nested CV 

approach facilitates an exhaustive analysis of the full dataset composed of more than 6200 pyridoxal 

derivatives (DB-I). Biased performance metrics and feature attributions were avoided as different 

disjunct subsets of the data were iteratively used for model hyperparameter optimization and 

validation, as well as for model training and testing. A schematic of the nested CV procedure is 

presented in the Appendix 3. For each outer CV fold the number of features considered when splitting 
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a node was tuned. Considering approximately 40–60% of all features was in most cases observed to 

yield the best performance. In the present RF analysis, we used ECFP fingerprint molecular 

representation as implemented in the Rdkit package.  

Deep-learning models 

Deep-learning ML methods have also been applied to our databases DB-I and DB-II. These ML 

approaches are based on artificial neural networks, specifically on convolutional neural networks (CNN) 

[7], and they use multiple layers to progressively extract higher-level features from the raw input. CNNs 

have three main types of layers. The convolutional and pooling layers are important in feature 

extraction, whereas the fully connected layer serves decision making purposes and executes the 

regression.  

In some of our deep-learning studies we used the DeepChem [8] machine learning library via 

the Google Colab service [9]. The deep-learning analysis was carried out in collaboration between TTK 

and the Department of Automation and Applied Informatics of the Budapest University of Technology 

and Economics. 

Various types of custom DeepChem models have been tested, but herein, we present results 

only for the following models: 

TextCNNModel – This CNN model applies multiple 1D convolutional filters to the padded 

strings, then max-over-time pooling is applied on all filters, extracting one feature per filter. All features 

are concatenated and transformed through several hidden layers to form predictions. The model was 

initially developed for sentence-level classification tasks, with words represented as vectors [10]. In this 

implementation, SMILES strings are dissected into characters and transformed to one-hot vectors in a 

similar way. 

RobustMultitaskRegressor – This model implements a neural network for robust multitasking. 

The key idea of this model is to have bypass layers that feed directly from features to task output [11]. 

This might provide some flexibility to route around challenges in multitasking with destructive 

interference. Multi-task learning (MTL) aims to improve the performance of multiple related tasks by 

exploiting the intrinsic relationships among them. 

AttentiveFPModel – This model was developed for graph property prediction based on graph 

convolution networks (GCN). It is more than a simple GCN because it introduces an attention 

mechanism for extracting nonlocal effects at the intramolecular level [12]. The model is atom-centric, 

so every atom has a node representation, which is a mix of the atom’s properties and its neighborhood’s 

features, and the bonds between them. Figuring out which nodes have bigger impact is the main task 

of this model. 

In addition to these DeepChem models, we tested a three-dimensional graph convolutional 

network (3DGCN), which is based on 3D molecular graphs [13] so it utilizes the spatial information from 

molecular topology. In this model, the adjacency and feature matrices are extended by the relative 

position matrix to account for the position of the vertices. This latter matrix is designed to involve the 



10 

 
 

 

CompBat project has received funding from the European Union’s Horizon 2020 research and innovation 

programme under grant agreement No 875565. This document has been produced by the CompBat project. The 

content in this document represents the views of the authors, and the European Commission has no liability in 

respect of the content. 

 
 

inter-atomic positions, rather than individual atomic positions, which ensures translational and 

rotational invariance. 

The 3DGCN model was implemented on local computers using the PyCharm [14] integrated 

development environment and Conda [15] open source package management system. Some of the 

Python codes and libraries were obtained from the 3DGCN GitHub project [16]. 

 

4 Results and Discussion 

4.1 Results of the RF analysis 

The distribution of the calculated redox potentials and solvation free energies in the DB-I dataset 

is visualized in Figures 5a and 5b. Whereas the redox potentials are rather evenly distributed with a 

mean and standard deviation of -1.45 ± 0.41 eV, the solubilities are more heavily concentrated to the 

low-solubility region (above -100 kcal/mol).  

Analyzing the DB-I pyridoxal dataset using the outlined ML workflow yields RF predictions for 

the sample molecule redox potentials and solubilities, which are compared against the computational 

values in Figures 5c and 5d. Predictions on both training (trainval) and test set samples are illustrated 

for one example outer CV fold to contrast the performance on the two data subsets. We emphasize, 

however, that the performance on the test data is nonetheless what determines the true generalization 

performance of the models. We note that training an RF model with one set of hyperparameters and 

the present dataset (80%-20% train-test split) is relatively fast, taking roughly 1–2 min depending on 

the hyperparameters. Conversely, formation of predictions with a trained model takes only a few 

seconds. If opted, the nested CV approach adds, however, to the total computational cost depending 

on the number of inner and outer folds and most importantly the specified number of randomized 

hyperparameter search iterations. 

Clearly, the RF algorithm is able to predict rather well pyridoxal redox potentials on the higher 

end of the distribution (Ered > -1.5 V), while more negative values show a more pronounced scattering 

with respect to the true computational values. Overall, the performance is nevertheless relatively good 

as shown by the unbiased generalization performance metrics averaged over all outer CV folds in Table 

I. Indeed, the MAE of the test set reaches almost the level of chemical accuracy, roughly 0.04 eV (1 

kcal/mol). It is furthermore noteworthy, that this error is smaller in magnitude than the intrinsic error 

both in the tight-binding calculations benchmarked against DFT (MAE 0.1 V) as well as the DFT values 

benchmarked against experimental results (MAE 0.24 V) in deliverable D1.1. 

The solubilities are illustrated in Figure 5d to be very well predicted by the employed RF 

algorithm, also reflecting a MAE close to the limit of chemical accuracy. Importantly, even though the 

majority of the samples are concentrated to the higher end of the solvation free energy distribution, 

the model is capable of very accurate prediction of highly soluble molecular samples. This indicates that 

the employed ECFP molecular representation is especially suited for the prediction of solvation 

properties. 
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Figure 5. Sorted a) redox potentials and b) solubilities in the pyridoxal dataset. The mean and standard deviation 
-1.45 ± 0.41 V and -51.1 ± 40.2 kcal/mol, respectively, are marked by the dashed line and shaded area in both 
panels. Parity plots of the c) redox potentials and d) solubilities predicted by the RF model versus the true 
computational values of the training and test set samples of an example outer CV split. Ideal correlation is marked 
by the dashed line and the shaded area corresponds to ± the test set RMSE averaged over all CV splits. The skew 
normal distributions right of the panels illustrate the distribution of samples within the full data and stratified 
example training and test sets. The test set distribution (red) has been arbitrarily scaled for visual purposes. 

 

Table I: Redox potential and solubility test set scoring (units in V and kcal/mol, respectively). 
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As an aggressive test of the model generalization performance, we have also performed an 

alternative cross-validation strategy in the nested CV outer loop. Here, the data is not split with 

stratification, but instead each member of the R1 substituent group is left out in turn and the trainval 

set is formed using all remaining molecules. Consequently, we test whether the RF algorithm together 

with the applied molecular representation is able to predict redox potentials and solubilities of samples 

with completely unseen substituents. The performance metrics of this leave-one-group-out (LOGO) 

experiment are also shown in Table I and indicate that the model performance notably worsens. 

Specifically, compared to the stratified nested CV, the errors are seen to increase by a factor of 2-3 for 

both the redox potentials and the solvation free energies. To improve this performance, either more 

training data is needed or the molecular representation should be tuned to better reflect fundamental 

properties of the molecules affecting redox potentials and solubilities. 

 

4.2 Performance of DeepChem models 

Redox potentials and solvation free energies for both, DB-I and DB-II pyridoxal datasets were 

analyzed by using the models incorporated in the DeepChem framework: TextCNNModel, 

RobustMultiRegressor and AttentiveFPModel. Herein we present the results obtained for the pyridoxal 

dataset DB-II. The database was split into training-validation-test parts in the ratio of 80%-10%-10%. 

For each dataset, 5-5 trainings were performed, by keeping the same 80% amount of the training set 

albeit randomly reordering the data of the full dataset before split. A number of 100 epoch were used. 

The Early Stopping monitored the MAE of the validation set at each 602 (DB-I) or 671 (DB-II) training 

steps and decided of training continuation. Default settings of the hyperparameters were used in the 

training and prediction procedures (Appendix 4).  

Analyzing the 5 different trainings by the TextCNNModel for database DB-II (Table II), it is 

apparent that the MAE for the three sets is almost invariable to the reordering of the database and the 

TextCNNModel is able to predict the redox potential at fairly high accuracy. The expected value for MAE 

of the test set is 0.062 ± 0.005 V, while the R2 for the whole database is 0.984 ± 0.001.  

Table II: MAE metrics of redox potentials predicted by TextCNNModel for 5 separate trainings (units in V). 

MAE Training Validation Test RMSE R2 

train 1 0.036 0.068 0.066 

0.062 
± 

0.005 

0.984 
± 

0.001 

train 2 0.030 0.063 0.061 

train 3 0.034 0.064 0.060 

train 4 0.033 0.063 0.064 

train 5 0.044 0.065 0.076 
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Predictions on all training, validation and test sets of the pyridoxal dataset are illustrated in Figure 

6a. The correlation between the true computational values and predicted redox potentials is rather 

good. A higher scattering can be observed at more negative values of the potential, in the range below 

-2.0 V. The MAE of the test set for the training presented in Figure 6 is 0.060 V.    

The distribution of the absolute error for the whole database is presented in Figure 6b. It is 

apparent, that the MAE is less than 0.19 V for 98.88% percent of the molecules, and for the 93.5% of 

the molecules is less than 0.10 V.       

 

Figure 6. Redox potentials as obtained by TextCNN modelling. a) Scatter plot between the DFT-computed versus 

TextCNNModel-predicted redox potentials. b) Distribution over the absolute error of predicted redox potentials. 

The amount of molecules represented by % are shown in the vertical axis.  
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The performances for predicting the redox potentials of RobustMultitaskRegressor and 

AttentiveFPModel are presented in Figure 7.  

 

Figure 7. Scatter plot between the DFT-computed and the predicted redox potentials by the RobustMultiRegressor 

and AttentiveFPModel, respectively. 

Predictions performed for the redox potentials have similar accuracy to the training with 

TextCNNModel. Interestingly, the potentials in the lower range (below -2 V) are more scattered by the 

AttentiveFPModel. However, the MAE for the test set, which is the measure of the accuracy of the 

predictions is almost invariable: 0.061 ± 0.002 V and 0.065 ± 0.006 V for RobustMultiRegressor and 

AttentiveFPModel trainings, respectively.  

The distribution of the absolute error (see Figure 8) is slightly higher for AttentiveFPModel as 

only 96.6% of the molecules are in the error range of 0-0.19 V. Nevertheless the MAE for more than 

98.0% of the molecules is less than 0.24 V.  

The overall performance of the three models can be considered very similar (see Table III). The 

MAE for the test set shows very little variance, the averaged RMSE calculated for the AttentiveFPModel 

over the full data is relatively larger. In terms of computational costs for the predictions there are no 

significant differences for the three methods. The featurizations for over 6000 molecules are in the 

range of seconds to less than 2 minutes, while the whole training and predictions are of the magnitude 

of few hours. The RobustMultiRegressor model, which has the lowest MAE is the fastest of all, the 

training takes only 2-5 minutes. With proper optimization of the model hyperparameters, the 

predictions are expected to reach or even outperform the chemical accuracy.  
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Figure 8. Distribution over the absolute error of redox potentials as obtained by a) RobustMultiRegressor and b) 

AttentiveFPModel predictions. The amount of molecules represented by % are shown in the vertical axis. 

 

Table III: Performance of ML trainings for redox potential (units in V). The notations refer to the considered sets: 

Training (Tr), Validation (V) and Test (Te). The averages for each model are computed over the 5 individual 

trainings. 

Model 
MAE 

Te 
RMSE 

Tr + V + Te 
R2 

Tr + V + Te 

TextCNNModel 0.065 ± 0.005 0.062 ± 0.005 0.984 ± 0.001 

RobustMultiRegressor 0.061 ± 0.002 0.063 ± 0.006 0.981 ± 0.0003 

AttentiveFPModel 0.065 ± 0.006 0.08 ± 0.006 0.972 ± 0.004 

 

All three DeepChem models were applied for predicting the solubilities. The scatter plot of the 

solvation free energies predicted by TextCNNModel versus the true computed values is shown in Figure 
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9. The correlation is notably high and in the high solubility range (-200/-300 kcal/mol) the model is able 

to predict in very high accuracy, with very low scattered values. More than 99% of molecules do not 

reach the absolute error value 10 kcal/mol.  

 

Figure 9. Solubilities as obtained by TextCNN modelling. a) Scatter plot between the DFT-computed versus 

TextCNNModel-predicted solvent corrections. b) Distribution over the absolute error of predicted solubilities. The 

amount of molecules represented by % are shown in the vertical axis. 

Comparison of performance for predicting the free solvation energies is presented in Table IV. The 

coefficient R2 is above 0.99 in all three cases. The MAEs for the test sets are rather small, they are not 

larger than 3 kcal/mol. Given that the values of the solvation free energies of the molecules can reach 

hundreds of kcal/mol this small MAE confirms that all three models are capable of very high predictive 

accuracy.    
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Table IV: Performance of ML trainings for solubilities (units in kcal/mol). The notations refer to the considered 

sets: Training (Train), Validation (Val) and Test (Test). The averages for each model are computed over the 5 

individual trainings. 

Model 
MAE 
Test 

RMSE 
Train + Val + Test 

R2 
Train + Val + Test 

TextCNNModel 1.9 ± 0.3 2.5 ± 0.2 0.998 ±0.0004 

RobustMultiRegressor 1.8 ± 0.1 2.3 ± 0.1 0.998 ± 0.0002 

AttentiveFPModel 2.5 ± 0.2 3.6 ± 0.4 0.994 ± 0.0012 

 

4.3 Results of the 3DGCN analysis 

The 3DGCN model was applied to database DB-II. 5 independent trainings were performed splitting 

the dataset into training, validation and test sets in 80-10-10% ratio. The trainings were performed 

using the hyperparameters optimized in the reference work [13]. The batch size was set to 16, and the 

size of the convolutional filter was 128 (further details are given in Appendix 5).  

The mean error metrics of separate runs shows only a slight variation (Table V). The MAE for the 

test set is 0.080 ± 0.001 V, which is slightly higher than those obtained with the previous deep-learning 

models, but still smaller than the DFT values benchmarked against experimental results (MAE = 0.24 V). 

The RMSE value for the test set is 0.110 ± 0.003 V. 

 

Table V: Error metrics of redox potentials predicted by 3DGCN for 5 separate trainings (units in V). 

 MAE Train MAE Val MAE Test RMSE Train RMSE Val RMSE Test 

train 1 0.062 0.075 0.079 0.083 0.103 0.108 

train 2 0.058 0.073 0.081 0.080 0.101 0.114 

train 3 0.052 0.081 0.080 0.070 0.112 0.108 

train 4 0.048 0.072 0.078 0.065 0.101 0.108 

train 5 0.055 0.080 0.079 0.074 0.114 0.109 

average 0.055±0.005 0.077±0.004 0.080±0.001 0.075±0.007 0.107±0.005 0.110±0.003 

 

The scatter plot between the DFT-computed versus 3DGCN-predicted redox potentials and the 

distribution over the absolute error of predicted redox potentials for an arbitrarily chosen training set 

is presented in Figure 10. The correlation of determination R2 is 0.94, the scatter of the predicted versus 

computed values is higher in the more negative region of the redox potential, similarly to those found 

with the other ML models. 
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Figure 10. Redox potentials as obtained by 3DGCN modelling. a) Scatter plot between the DFT-computed versus 

3DGCN-predicted redox potentials. b) Distribution over the absolute error of predicted redox potentials. The 

amount of molecules represented by % are shown in the vertical axis. 

 

The accuracy of prediction for the solubilities is much better than for the redox potentials as 

illustrated in Figure 11. R2 is above 0.99 and the scatter of the predicted values versus full computed 

ones is very narrow. The trend line for all the data is almost fully overlapping with the ideal correlation 

show in black dashed line in Figure 11a. The MAE for the majority of molecules is below 11 kcal/mol. 
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Figure 11. Solubilities as obtained by 3DGCN modelling. a) Scatter plot between the DFT-computed versus 3DGCN-

predicted solvent corrections. b) Distribution over the absolute error of predicted solubilities. The amount of 

molecules represented by % are shown in the vertical axis. 

Clearly the 3DGCN is more suitable for predicting the free solvation energies, the overall R2 is 

0.993 ± 0.001, while in the case of redox potentials the expected value for R2 is smaller and the standard 

deviation is larger. Even so, the expected value of MAE for the predicted redox potentials for the test 

sets can be considered good enough as compared to the MAE of DFT values benchmarked against 

experimental results, or xtb-computed values against the DFT values.  

 The overall performance of 3DGCN is summarized in Table VI. 
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Table VI: Performance of 3DGCN trainings for redox potentials and solubilities (units in V and kcal/mol, 

respectively). All values are reported for the test sets. The averages for each model are computed over the 5 

individual trainings. 

3DGCN MAE RMSE R2 

Redox potential 0.080 ± 0.001 0.110 ± 0.003  0.937 ± 0.004 

Solubilities 2.5 ± 0.4 3.5 ± 0.5  0.994 ± 0.002 

 

 

4.4 SHAP feature attribution analysis 

Shapley additive explanations (SHAP) introduced by Lundberg and Lee [17] were employed as 

consistent and robust feature attributions assessing which molecular substructures are most impactful 

when forming redox potential and solubility predictions. The SHAP values are based on the classical 

Shapley values [18] known from co-operative game theory, solving the problem of fair credit 

distribution among players participating in a collaborative game. In the present context, the game is 

the formation of a ML model output and the co-operating players are the specified features, i.e. the 

molecular substructures encoded by the ECFP4 fingerprints. In this work, the SHAP feature attribution 

analysis was implemented using the shap Python package [17] employing the efficient tree-specific 

version of the algorithm (TreeSHAP) [19]. Leveraging the above described nested CV procedure, each 

pyridoxal redox potential and solubility prediction was explained sequentially in the outer CV loop by 

attributing SHAP values (local importances) to the respective input features and aggregating the results 

for each fold. 

Shapley additive explanations are computed in the outer CV loop. Thus, feature importances 

are attributed to each test set sample in a sequential manner, looping through the full dataset over the 

course of the nested CV. Considering first the redox potentials, a global summary of the feature 

importances is given in Figure 12a, where the mean magnitude of the SHAP values over the whole 

dataset are illustrated for the ten most impactful features. Figure 12a demonstrates clearly that one 

feature stands out as particularly important for the formation of ML redox potential predictions, namely 

the molecular substructure encoded by the bit number 1010. Specifically, the absence of this feature 

increases the redox potential, while its presence has a decreasing impact on the prediction. Thus the 

correlation between the SHAP value and the feature value is negative. The other features having a 

pronounced impact on the redox potential predictions have a significantly smaller global importance 

and the differences fall in many cases within the error bars. 
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Figure 12. a) Mean magnitude of SHAP values for the ten most impactful molecular substructures as a measure 
of global importance in forming redox potential predictions. The average is taken for each feature over all test set 
samples in each outer CV fold and the error bars denote the standard deviation of the global measure over the 
outer CV folds. The red and blue color coding delineates whether the correlation between the marginal 
contribution (SHAP values) and the feature value is positive or negative, i.e. does the presence (absence) of a 
molecular substructure increase (decrease) the redox potential or vice versa. b) Violin-like scatter plots of SHAP 
values for the ten (globally) most important features and each sample molecule in the full pyridoxal redox 
potential dataset. The feature values are color coded as illustrated by the color bar and the vertical dispersion of 
SHAP values indicates the sample density, i.e. number of molecules with similar SHAP values for a given feature. 

The global feature importance as gauged by the mean magnitude of the SHAP values gives a 

simple overview of the average importance of each feature. It is, however, informative to utilize the 

property of SHAP as a local feature attribution method and visualize the SHAP values separately for 

each sample molecule and feature in Figure 12b. The violin-like scatter plots show the distribution of 

the attributed importances for each molecule, and for feature 1010 the distribution shows a distinct 

binary separation where the presence of the molecular substructure consistently negatively shift the 

redox potential predictions, by even as much as -0.5 eV. On the other hand, the absence of the feature 

slightly more moderately, but still considerably, increases the model outputs. The local accuracy of the 

SHAP values demonstrates also nicely that for individual samples the attributed importances may attain 

rather large values also for those features reflecting a relatively small global importance, such as feature 

904. 

The molecular substructures encoded by the ECFP fingerprints can be explained using the bit 

information stored when mapping the fragments into the binary representation. Using example 

molecules, the most important substructures are highlighted in Figure 13. Interestingly, the highly 

impactful feature 1010 is found to correspond to an acyclic substituent Ar –CH2R with non-hydrogen 

neighboring substituents in both ortho positions. Notably, such moieties are found only in the pyr2 

molecular set, where the amine side chain attached to the aromatic pyridoxal core satisfies this 

condition. The other globally important features affecting the redox potential predictions correspond 

to perfluorinated groups (273, 490, 429), alkoxides (202, 792), and cyclic aryl ether moieties (270). Also, 

arylamine and -amide groups (813, 845) are found within the ten note that the positive correlation 
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between the redox potential and the presence of perfluorinated groups can be explained by their 

character as electron-withdrawing groups (EWG), increasing the tendency of the molecule to be 

reduced. The same applies for nitro groups that can be found just below the top ten most important 

substructures. Conversely, the amine/amide features of the pyr2 set are characterized as electron-

donating groups (EDG) with the opposite effect on the redox potential. The same applies for the cyclic 

aryl ether, while the positive correlation of the alkoxide groups is most likely an interaction effect with 

the perfluorinated substructures, as these are often present together as seen in Figure x. Otherwise, 

alcohols and alkoxides are generally considered EDGs. The most important features with the same 

correlation as the feature 1010, which is understandable considering that feature 1010 is connected to 

the amine side chains of the pyr2 molecular set. We note that the positive correlation between the 

redox potential and the presence of perfluorinated groups can be explained by their character as 

electron-withdrawing groups (EWG), increasing the tendency of the molecule to be reduced. The same 

applies for nitro groups that can be found just below the top ten most important substructures. 

Conversely, the amine/amide features of the pyr2 set are characterized as electron-donating groups 

(EDG) with the opposite effect on the redox potential [20]. The same applies for the cyclic aryl ether, 

while the positive correlation of the alkoxide groups is most likely an interaction effect with the 

perfluorinated substructures, as these are often present together. Otherwise, alcohols and alkoxides 

are generally considered EDGs. 

 

Figure 13. Ten globally most important molecular substructures for forming redox potential predictions. The 
illustrated molecules are examples and the bit encoded features are highlighted either in red or blue whether the 
presence of the features has an increasing (positive correlation) or decreasing (negative correlation) influence on 
the model output. 

The same analysis as above is performed on the solubility predictions, revealing in Figure 14a a 

slightly more even global importance distribution than observed for the redox potential data. Still, one 

feature stands out as particularly important, namely feature 192. Considering the local feature 

attributions in Figure 14b, the presence of this feature may have a substantially negative impact on the 

solvation free energies, increasing the solubility by as much as -120 kcal/mol for some sample 

molecules. We note that only one feature (814) of the ten most impactful is seen to exhibit a positive 
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correlation, i.e. the presence of the feature increases the solvation free energy. Illustration of the most 

important substructures in Figure 15 unravels that the molecular solubility is mainly increased by the 

presence of phosphorus, sulfoxide, phosphoxide, carboxylate, aryl sulfide, oxygen and ammonium 

groups. In contrast, a protonation of the phosphoxide group yielding an uncharged phosphonic acid 

correlates with an increased solvation free energy, i.e. decreased solubility. These findings align well 

with fundamental chemical knowledge that charged and polar groups increase solubilities and gives 

support to the employed SHAP analysis as a reliable feature attribution method yielding ML prediction 

explanations consistent with human chemical intuition. 

 

Figure 14. As Figure 11, but now for the solubility (solvation free energy). 

 

Figure 15. As Figure 12, but now for the solubility (solvation free energy). 

The detailed local resolution of the SHAP feature attribution method is highlighted by 

decoupling feature contributions for individual model outputs. Such a “waterfall” plot is shown in Figure 

16a for one example molecule and redox potential prediction from the pyr2 set. Here, the presence of 

the electron-donating amine side chain results in a net decrease of -0.24 V in the redox potential 
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prediction. Conversely, the electron-withdrawing perfluorinated side chain at the R2 position increases 

the model redox potential output by as much as 0.78 V. Including the net contribution of -0.08 V from 

the remaining 1015 features results in a model output of -0.96 V, roughly 0.5 V more positive than the 

model base value. 

 

Figure 16. a) Waterfall plot decoupling individual feature contributions for an example pyr2 molecule and model 
redox potential output. The 9 locally most important features are explicitly shown while the net impact of the 
remaining 1015 substructures are combined. The model base value is shown below the plot, whereas the resulting 
output after adding the marginal contributions is shown on the top. b) Heatmap of SHAP values for the ten globally 
most impactful features and all sample molecules. The remaining 1014 features are shown aggregated on the 
bottom row. The model output after summing all SHAP values for each molecule, respectively, and including the 
model base value is plotted in red above the heatmap, while the blue dots indicate the true computational redox 
potentials. The model base value is indicated by the gray dashed line. 

Multiple waterfall plots can be compactly visualized by a heatmap as shown in Figure 16b. Each 

pixel of the heatmap corresponds to an individual sample molecule and feature combination, color 

coded by the corresponding SHAP value. The elements are further clustered such that instances with 

similar explanations (SHAP values) are grouped. Thus, all pyr2 molecules are illustrated to the left in the 

heatmap, exhibiting more negative redox potentials than the model base value. Molecules with 

perfluorinated EWGs (273, 490, 792) and lacking feature 1010 are in contrast shown to the right, 

accordingly reflecting more positive redox potentials as shown by the plotted model predictions and 

the true computational values above the heatmap. 

Analogous visualizations are presented for the solubility data in Figures 17a and 17b, now fora 

molecule from the pyr3 set. Here, the presence of the charged phosphate group decisively increases 

the solubility by more than -110 kcal/mol, while the heterocyclic amino ether substructure decreases 

the solubility by more than 21 kcal/mol. Including the net solvation energy increase of 13.4 kcal/mol 

caused by the 1015 other features yields the solubility prediction -122.7 kcal/mol. Again, the waterfall 

plots can be combined as illustrated in Figure 16b. Clearly, the most negative solubilities are clustered 

top right in the heatmap, where the presence of phosphorus, sulfoxide and phosphoxide groups have 

a significantly decreasing contribution to the solvation free energy predictions. 
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Figure 17. As Figure 15, but now for the solubility (solvation free energy) and a molecule from the pyr3 set. 

 

 

5 Conclusions 

Several machine learning (ML) techniques, including the commonly used random forest algorithm and 

deep-learning convolutional neural networks, were applied to molecular libraries developed within the 

CompBat project to assess their performance for predicting reduction potentials and aqueous 

solubilities of pyridoxal derivatives considered as potential candidates for new generation redox flow 

batteries. We find that all ML models tested in our present work perform remarkably well exceeding 

the accuracy of the quantum chemical computational protocol used to generate the pyridoxal 

databases. 

In the spirit of explainable artificial intelligence [21], we applied a robust feature attribution 

methodology to unravel the contribution of different molecular substructures to the redox potential 

and solubility predictions. The analysis indicates that electron-withdrawing groups, such as 

perfluorinated moieties, have a decisively increasing effect on the redox potentials, while the presence 

of electron-donating amine/amide side chains have a clearly decreasing effect on the predicted redox 

potentials. 

The presented ML analysis demonstrates an efficient methodology for high-throughput screening of 

RFB compounds, which will be further exploited within the CompBat project. 
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Appendix 1: Consortium 

COMPUTER AIDED DESIGN FOR NEXT GENERATION FLOW BATTERIES 

COMPBAT 
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No. 
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1 

(Coordinator) 
Aalto Korkeakoulusaatio sr Aalto University (Aalto) Finland 

2 
Természettudományi Kutatóközpont Research Centre for Natural 

Sciences (TTK) 
Hungary 

3 Uppsala Universitet Uppsala University (UU) Sweden 

4 Universita Di Pisa Pisa University (UNIPI) Italy 

5 Skolkovo Institute of Science and Technology (SKOLTECH) Russia 

6 Jyvaskylan Yliopisto University of Jyväskylä (JYU) Finland 

7 Turun Yliopisto University of Turku (UTU) Finland 
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Appendix 2. Database in tabulated form 

The computed reduction potentials and solubility data are provided in separate Excel documents (DB-

II-pot.csv and DB-II-solv.csv). The first few lines of these tables are shown below for illustration. The 

reduction potentials are given in V, the Gibbs free energies of solvation are in kcal/mol, SMILES strings 

and the number of heavy atoms are in the last two columns. 

 

Table DB-II-pot.csv 

 NR POT R3 R1 R2 CHG SYS SMILES NUMHEAVY 

0 1 -1.31 COOH P1 a1 0 pyr1 Cc1c[n+](C)c(C)c(O)c1C(=O)[O-] 13 

1 2 -1.26 COOH P1 a2 0 pyr1 CCc1c[n+](C)c(C)c(O)c1C(=O)[O-] 14 

2 3 -1.36 COOH P1 a3 0 pyr1 Cc1c(O)c(C(=O)[O-])c(C(C)C)c[n+]1C 15 

3 4 -1.37 COOH P1 a4 0 pyr1 Cc1c(O)c(C(=O)[O-])c(C(C)(C)C)c[n+]1C 16 

4 5 -1.28 COOH P1 a5 0 pyr1 CCCc1c[n+](C)c(C)c(O)c1C(=O)[O-] 15 

5 6 -1.28 COOH P1 a6 0 pyr1 Cc1c(O)c(C(=O)[O-])c(CC(C)C)c[n+]1C 16 

6 7 -1.34 COOH P1 a7 0 pyr1 Cc1c(O)c(C(=O)[O-])c(CC(C)(C)C)c[n+]1C 17 

7 8 -1.27 COOH P1 a8 0 pyr1 CCCCc1c[n+](C)c(C)c(O)c1C(=O)[O-] 16 

8 9 -1.2 COOH P1 b1 0 pyr1 Cc1c(O)c(C(=O)[O-])c(-c2ccccc2)c[n+]1C 18 

9 10 -1.22 COOH P1 b2 0 pyr1 Cc1ccc(-c2c[n+](C)c(C)c(O)c2C(=O)[O-])cc1 19 

10 11 -1.21 COOH P1 b3 0 pyr1 CCc1ccc(-c2c[n+](C)c(C)c(O)c2C(=O)[O-])cc1 20 

11 12 -1.22 COOH P1 b4 0 pyr1 Cc1c(O)c(C(=O)[O-])c(-c2ccc(C(C)C)cc2)c[n+]1C 21 

12 13 -1.21 COOH P1 b5 0 pyr1 Cc1c(O)c(C(=O)[O-])c(-c2ccc(C(C)(C)C)cc2)c[n+]1C 22 

 

Table DB-II-sol.csv 

 NR Solv-XTB R3 R1 R2 CHG SYS SMILES NUMHEAVY 

0 1 -37.7572 COOH P1 a1 0 pyr1 Cc1c[n+](C)c(C)c(O)c1C(=O)[O-] 13 

1 2 -38.7137 COOH P1 a2 0 pyr1 CCc1c[n+](C)c(C)c(O)c1C(=O)[O-] 14 

2 3 -39.2184 COOH P1 a3 0 pyr1 Cc1c(O)c(C(=O)[O-])c(C(C)C)c[n+]1C 15 

3 4 -39.6737 COOH P1 a4 0 pyr1 Cc1c(O)c(C(=O)[O-])c(C(C)(C)C)c[n+]1C 16 

4 5 -38.8333 COOH P1 a5 0 pyr1 CCCc1c[n+](C)c(C)c(O)c1C(=O)[O-] 15 

5 6 -39.0885 COOH P1 a6 0 pyr1 Cc1c(O)c(C(=O)[O-])c(CC(C)C)c[n+]1C 16 

6 7 -39.0366 COOH P1 a7 0 pyr1 Cc1c(O)c(C(=O)[O-])c(CC(C)(C)C)c[n+]1C 17 

7 8 -39.0988 COOH P1 a8 0 pyr1 CCCCc1c[n+](C)c(C)c(O)c1C(=O)[O-] 16 

8 9 -40.4976 COOH P1 b1 0 pyr1 Cc1c(O)c(C(=O)[O-])c(-c2ccccc2)c[n+]1C 18 

9 10 -40.9504 COOH P1 b2 0 pyr1 Cc1ccc(-c2c[n+](C)c(C)c(O)c2C(=O)[O-])cc1 19 

10 11 -41.0157 COOH P1 b3 0 pyr1 CCc1ccc(-c2c[n+](C)c(C)c(O)c2C(=O)[O-])cc1 20 

11 12 -41.3542 COOH P1 b4 0 pyr1 Cc1c(O)c(C(=O)[O-])c(-c2ccc(C(C)C)cc2)c[n+]1C 21 

12 13 -41.3956 COOH P1 b5 0 pyr1 Cc1c(O)c(C(=O)[O-])c(-c2ccc(C(C)(C)C)cc2)c[n+]1C 22 
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Appendix 3: Nested cross-validation 

A schematic illustration of the implemented nested cross-validation workflow is illustrated in Figure 

A.1. In the outer loop, the data is split into k (stratified) folds. Each fold is in turn selected as a held-out 

test (test) set while the remaining folds form the training and validation (trainval) set. The formed 

trainval set is split in the inner loop into l (stratified) folds. Each fold is in turn selected as a held-out 

validation (val) set, while the remaining folds are combined into a training (train) set on which the model 

is trained using different hyperparameter settings. Each model is validated on the val set and the 

defined loss function is evaluated and averaged across all inner CV folds to determine the best 

hyperparameter combination. With the best hyperparameters, the model is trained on the full trainval 

set and finally tested on the outer loop test set withheld before entering the inner loop. Averaging the 

model loss on the test set over all outer CV folds yields an unbiased performance estimation of the 

employed ML algorithm (RF) including error bars reflecting the algorithm stability with respect to 

different input data. Herein, SHAP values for each test set sample are also computed in the outer CV 

loop, thus enabling an exhaustive analysis and explanation of all predictions for each molecule in the 

full dataset. Importantly, feature importances are always evaluated on samples unseen by a particular 

model, thus avoiding bias associated with the trainingset instances to which the models could 

theoretically overfit. 

 
Figure. A.1: Nested cross-validation exemplified for the case of 4x3-fold CV. 
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Appendix 4: Hyperparameters of DeepChem methods 

For ML models used via DeepChem the default hyperparameters were utilized, which are listed below. 

 

TextCNN: 

n_embedding: 75(deafault) - Length of embedding vector. 

num_filters(list): [100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160] (deafault) – Properties of filters used 

in the conv net (The number of filters is the number of neurons, since each neuron performs a different 

convolution on the input to the layer). 

dropout(list or float): 0.25(deafault) - Dropout rate (Dropout is a technique where randomly selected neurons are 

ignored during training). The length of this list should equal len(layer_sizes). Alternatively this may be a single 

value instead of a list, in which case the same value is used for every layer. 

mode: regression 

 

AttentiveFPModel: 

num_layers: 2(deafault) – Number of graph neural network layers, i.e. number of rounds of message passing. 

num_timesteps: 2(deafault) – Number of time steps for updating graph representations with a GRU(Gated 

recurrent unit).  

graph_feat_size: 200(deafault) – Size for graph representations. 

dropout: 0(deafault) – Dropout probability. The length of this list should equal len(layer_sizes). Alternatively this 

may be a single value instead of a list, in which case the same value is used for every layer. 

mode: regression(deafault) 

number_atom_features:30(default, from featurizer) – The length of the initial atom feature vectors.  

number_bond_features: 11(default, from featurizer) – The length of the initial bond feature vectors.  

self_loop: True(default) – Whether to add self loops for the nodes, i.e. edges from nodes to themselves. When 

input graphs have isolated nodes, self loops allow preserving the original feature of them in message passing. 

 

RobustMultitaskRegressor 

layer_sizes(list): [1000](default) – the size of each dense layer in the network. The length of this list determines 

the number of layers. 

weight_init_stddevs: 0.02(default) – the standard deviation of the distribution to use for weight initialization of 

each layer. The length of this list should equal len(layer_sizes). Alternatively this may be a single value instead of 

a list, in which case the same value is used for every layer. 
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bias_init_consts: 1.0(default) – the value to initialize the biases in each layer to. The length of this list should equal 

len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for 

every layer. 

weight_decay_penalty: 0.0(default) – the magnitude of the weight decay penalty to use 

weight_decay_penalty_type: l2(default) – the type of penalty to use for weight decay, either ‘l1’ or ‘l2’ 

dropouts: 0.5(default) – the dropout probablity to use for each layer. The length of this list should equal 

len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same value is used for 

every layer. 

activation_fns: tf.nn.relu(default) – the Tensorflow activation function to apply to each layer. The length of this 

list should equal len(layer_sizes). Alternatively this may be a single value instead of a list, in which case the same 

value is used for every layer. 

bypass_layer_sizes: [100](default) – the size of each dense layer in the bypass network. The length of this list 

determines the number of bypass layers. 

bypass_weight_init_stddevs: [0.02](default) – the standard deviation of the distribution to use for weight 

initialization of bypass layers. same requirements as weight_init_stddevs 

bypass_bias_init_consts: [1.0](default) – the value to initialize the biases in bypass layers same requirements as 

bias_init_consts 

bypass_dropouts: [0.5](default) – the dropout probablity to use for bypass layers. same requirements as dropouts 
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Appendix 5: Hyperparameters of the 3DGCN model 

Hyperparameter optimization was carried out in 3DGCN studies. The training was performed with 

the optimized model, with the following hyperparameters, indicating the name of the parameters in 

the project in parentheses: 

● Batch size (batch): 16 

● Size of convolutional filter (units_conv): 128 

● Size of filter in fully connected layers (units_dense): 128 

● Number of convolutional layer (num_layers): 4 

● Pooling technique: sum 

● Fold of cross-validation: 5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


